94 research outputs found

    Distinct Relationship Between Cognitive Flexibility and White Matter Integrity in Individuals at Risk of Parkinson’s Disease

    Get PDF
    Background and Objective: Executive dysfunction is the most common cognitive impairment in Parkinson’s disease (PD), occurring even in its early stages. In our study, we applied diffusion tensor imaging (DTI) to investigate white matter integrity and its association with a specific executive function such as cognitive flexibility in individuals with risk factors for PD. Methods: We examined 50 individuals with risk factors for developing PD and 24 healthy controls from the TREND (Tübinger Evaluation of Risk Factors for Early Detection of Neurodegeneration) study including neuropsychological evaluation and DTI. Cognitive flexibility was assessed using the trail making test (TMT). Tract based spatial statistics (TBSS) were employed to assess white matter abnormalities and their correlation with cognitive flexibility. Results: TMT performance correlated with mean and axial diffusivity in several white matter regions, predominantly in the frontoparietal white matter. These effects were stronger in PD risk persons (PD-RP) than in controls as evidenced by a significant group interaction. White matter integrity and TMT performance did not significantly differ across groups. Conclusion: Based on our results, PD-RP do no exhibit white matter changes or impaired cognitive flexibility. However, specific executive functions in PD-RP are more related to white matter alterations than in healthy older adults

    Gait decline while dual-tasking is an early sign of white matter deterioration in middle-aged and older adults

    Get PDF
    Loss of white matter integrity (WMI) is associated with gait deficits in middle-aged and older adults. However, these deficits are often only apparent under cognitively demanding situations, such as walking and simultaneously performing a secondary cognitive task. Moreover, evidence suggests that declining executive functions (EF) are linked to gait decline, and their co-occurrence may point to a common underlying pathology, i.e., degeneration of shared brain regions. In this study, we applied diffusion tensor imaging (DTI) and a standardized gait assessment under single- and dual-tasking (DT) conditions (walking and subtracting) in 74 middle-aged and older adults without any significant gait or cognitive impairments to detect subtle WM alterations associated with gait decline under DT conditions. Additionally, the Trail Making Test (TMT) was used to assess EF, classify participants into three groups based on their performance, and examine a possible interaction between gait, EF, and WMI. Gait speed and subtracting speed while dual-tasking correlated significantly with the fractional anisotropy (FA) in the bilateral anterior corona radiata (highest r = 0.51/p < 0.0125 FWE-corrected). Dual-task costs (DTC) of gait speed correlated significantly with FA in widespread pathways, including the corpus callosum, bilateral anterior and superior corona radiata, as well as the left superior longitudinal fasciculus (highest r = −0.47/p < 0.0125 FWE-corrected). EF performance was associated with FA in the left anterior corona radiata (p < 0.05); however, EF did not significantly mediate the effects of WMI on DTC of gait speed. There were no significant correlations between TMT and DTC of gait and subtracting speed, respectively. Our findings indicate that gait decline under DT conditions is associated with widespread WM deterioration even in middle-aged and older adults without any significant gait or cognitive impairments

    Doping dependence of the chemical potential and surface electronic structure in YBa2Cu3O6+x and La2-xSrxCuO4 using hard x-ray photoemission spectroscopy

    Full text link
    The electronic structure of YBa2Cu3O6+x and La2-xSrxCuO4 for various values of x has been investigated using hard x-ray photoemission spectroscopy. The experimental results establish that the cleaving of YBa2Cu3O6+x compounds occurs predominantly in the BaCuO3 complex leading to charged surfaces at higher x and to uncharged surfaces at lower x values. The bulk component of the core level spectra exhibits a shift in binding energy as a function of x, from which a shift of the chemical potential as a function of hole concentration in the CuO2 layers could be derived. The doping dependence of the chemical potential across the transition from a Mott-Hubbard insulator to a Fermi-liquid-like metal is very different in these two series of compounds. In agreement with previous studies in the literature the chemical potential shift in La2-xSrxCuO4 is close to zero for small hole concentrations. In YBa2Cu3O6+x, similar to all other doped cuprates studied so far, a strong shift of the chemical potential at low hole doping is detected. However, the results for the inverse charge susceptibility at small x shows a large variation between different doped cuprates. The results are discussed in view of various theoretical models. None of these models turns out to be satisfactory.Comment: 18 pages, 15 figure

    Load sensitive stable current source for complex precision pulsed electroplating

    Get PDF
    Electrodeposition is a highly versatile and well explored technology. However, it also depends strongly on the experience level of the operator. This experience includes the pretreatment of the sample, and the composition of the electrolyte settings of the plating parameters. Accurate control over the electroplating current is needed especially for the formation of small structures, where pulsed electrodeposition has proven to reduce many unwanted effects. To bring precision into the formation of optimal recipes, a highly flexible current source based on a microcontroller was developed. It allows a large variety of pulse waveforms, as well as maintaining a feedback loop that controls the current and monitors the output voltage, allowing for both galvanostatic (current driven) and potentiostatic (voltage driven) electrodeposition. The system has been implemented with multiple channels, permitting the simultaneous electrodeposition of multiple substrates in parallel. Being based on a microcomputer, the system can be programmed using predefined recipes individually for each channel, or even adapt the recipes during plating. All measurement values are continuously recorded for the purpose of documentation and diagnosis. The current source is based on a high power operational amplifier in a modified Howland current source configuration. This paper describes the functionality of the electrodeposition system, with a focus on the stability of the source current under different electrodeposition current densities and frequencies. The performance and high capability of the system is demonstrated by performing and analyzing two nontrivial plating applications

    Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures

    Get PDF
    Changes in host plant quality, including foliar amino acid concentrations, resulting from global climate change and attack from multiple herbivores, have the potential to modify the pest status of insect herbivores. This study investigated how mechanically simulated root herbivory of lucerne (Medicago sativa) before and after aphid infestation affected the pea aphid (Acyrthosiphon pisum) under elevated temperature (eT) and carbon dioxide concentrations (eCO2). eT increased plant height and biomass, and eCO2 decreased root C:N. Foliar amino acid concentrations and aphid numbers increased in response to eCO2, but only at ambient temperatures, demonstrating the ability of eT to negate the effects of eCO2. Root damage reduced aboveground biomass, height, and root %N, and increased root %C and C:N, most probably via decreased biological nitrogen fixation. Total foliar amino acid concentrations and aphid colonization success were higher in plants with roots cut early (before aphid arrival) than those with roots cut late (after aphid arrival); however, this effect was counteracted by eT. These results demonstrate the importance of amino acid concentrations for aphids and identify individual amino acids as being potential factors underpinning aphid responses to eT, eCO2, and root damage in lucerne. Incorporating trophic complexity and multiple climatic factors into plant–herbivore studies enables greater insight into how plants and insects will interact in the future, with implications for sustainable pest control and future crop security

    Metabolite Profiling Uncovers Plasmid-Induced Cobalt Limitation under Methylotrophic Growth Conditions

    Get PDF
    BACKGROUND:The introduction and maintenance of plasmids in cells is often associated with a reduction of growth rate. The reason for this growth reduction is unclear in many cases. METHODOLOGY/PRINCIPAL FINDINGS:We observed a surprisingly large reduction in growth rate of about 50% of Methylobacterium extorquens AM1 during methylotrophic growth in the presence of a plasmid, pCM80 expressing the tetA gene, relative to the wild-type. A less pronounced growth delay during growth under non-methylotrophic growth conditions was observed; this suggested an inhibition of one-carbon metabolism rather than a general growth inhibition or metabolic burden. Metabolome analyses revealed an increase in pool sizes of ethylmalonyl-CoA and methylmalonyl-CoA of more than 6- and 35-fold, respectively, relative to wild type, suggesting a strongly reduced conversion of these central intermediates, which are essential for glyoxylate regeneration in this model methylotroph. Similar results were found for M. extorquens AM1 pCM160 which confers kanamycin resistance. These intermediates of the ethylmalonyl-CoA pathway have in common their conversion by coenzyme B(12)-dependent mutases, which have cobalt as a central ligand. The one-carbon metabolism-related growth delay was restored by providing higher cobalt concentrations, by heterologous expression of isocitrate lyase as an alternative path for glyoxylate regeneration, or by identification and overproduction of proteins involved in cobalt import. CONCLUSIONS/SIGNIFICANCE:This study demonstrates that the introduction of the plasmids leads to an apparent inhibition of the cobalt-dependent enzymes of the ethylmalonyl-CoA pathway. Possible explanations are presented and point to a limited cobalt concentration in the cell as a consequence of the antibiotic stress

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≥week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    Endovascular repair of blunt thoracic aortic injury

    No full text
    Traumatic thoracic aortic injuries are rare in the pediatric population. Most patients sustaining this injury do not survive and succumb at the scene. Associated injuries can complicate the management of the aortic injury. Aortic injuries have traditionally been treated by open repair. In the adult population, endovascular stenting has become the management of choice. The pediatric literature has isolated reports of the use of endovascular stenting in the repair of aortic injuries. We report an 11 year old female with multiple injuries and a grade III thoracic rupture with a pseudoaneurysm successfully managed with endovascular stenting
    corecore